The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation.
نویسندگان
چکیده
Protein G is folded with an all-atom Monte Carlo simulation by using a Gō potential. When folding is monitored by using burial of the lone tryptophan in protein G as the reaction coordinate, the ensemble kinetics is single exponential. Other experimental observations, such as the burst phase and mutational data, are also reproduced. However, more detailed analysis reveals that folding occurs over three distinct, three-state pathways. We show that, because of this tryptophan's asymmetric location in the tertiary fold, its burial (i) does not detect certain intermediates and (ii) may not correspond to the folding event. This finding demonstrates that ensemble averaging can disguise the presence of multiple pathways and intermediates when a non-ideal reaction coordinate is used. Finally, all observed folding pathways eventually converge to a common rate-limiting step, which is the formation of a specific nucleus involving hydrophobic core residues. These residues are conserved in the ubiquitin superfamily and in a phage display experiment, suggesting that fold topology is a strong determinant of the transition state.
منابع مشابه
The ensemble folding kinetics of the FBP28 WW domain revealed by an all-atom Monte Carlo simulation in a knowledge-based potential.
In this work, we apply a detailed all-atom model with a transferable knowledge-based potential to study the folding kinetics of Formin-Binding protein, FBP28, which is a canonical three-stranded β-sheet WW domain. Replica exchange Monte Carlo simulations starting from random coils find native-like (Cα RMSD of 2.68 Å) lowest energy structure. We also study the folding kinetics of FBP28 WW domain...
متن کاملThermodynamics and Kinetics of Folding of a Small Peptide
We study the thermodynamics and kinetics of folding for a small peptide. Our data rely on Monte Carlo simulations where the interactions among all atoms are taken into account. Monte Carlo kinetics is used to study folding of the peptide at suitable temperatures. The results of these canonical simulations are compared with that of a generalized-ensemble simulation. Our work demonstrates that co...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملProtein folding theory: from lattice to all-atom models.
This review focuses on recent advances in understanding protein folding kinetics in the context of nucleation theory. We present basic concepts such as nucleation, folding nucleus, and transition state ensemble and then discuss recent advances and challenges in theoretical understanding of several key aspects of protein folding kinetics. We cover recent topology-based approaches as well as evol...
متن کاملEnergy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations
The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 17 شماره
صفحات -
تاریخ انتشار 2002